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EPCRA - Emergency Planning and Community Right-to-Know Act  

GIS - Geographic Information Systems 

g/(s-m2) – grams per second meter squared 

µg/m3- micrograms per cubic meter  

ng/m3 - nanograms per cubic meter  

NCDC - National Climatic Data Center  

km2 - square kilometers 

SIC - Standard Industrial Classification

TRI - Toxics Release Inventory 

UTM -Universal Transverse Mercator   
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Abstract

The Toxics Release Inventory (TRI) requires facilities with 10 or more full time 

employees that process over 25,000 pounds in aggregate or use more than 10,000 pounds of any 

one TRI chemical to report releases annually.  However, little is known about releases from non-

TRI-reporting facilities; nor has attention been given to the very localized equity impacts 

associated with air toxics releases. Using Geographic Information Systems (GIS) and Industrial 

Source Complex dispersion modeling, we developed methods for characterizing air releases from 

TRI-reporting as well as non-TRI-reporting facilities at four levels of geographic resolution. We 

characterized the spatial distribution and concentration of air releases from one representative 

industry in Durham County, NC.  Inclusive modeling of all facilities rather than modeling of TRI 

sites alone significantly alters the magnitude and spatial distribution of modeled air 

concentrations. Modeling exposure receptors at more refined levels of geographic resolution 

reveals localized, neighborhood-level exposure hotspots that are not apparent at coarser 

geographic scales. Multivariate analysis indicates that inclusive facility modeling at fine levels of 

geographic resolution reveals income and race exposure disparities. These new methods 

significantly enhance the ability to model air toxics and perform equity analysis and clarify 

conflicts in the literature regarding environmental justice findings. This work has substantial 

implications for how to structure TRI reporting requirements, as well as how and what types of 

analysis will successfully elucidate the spatial distribution of exposure potentials across 

geographic, income, and racial lines. 
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1 Background 

Temporal, spatial, and other special circumstances can result in disproportionate 

environmental exposures and may play a role in differential health outcomes.  For example, 

numerous studies highlight the disparate impact of asthma and allergies on specific subsets of the 

population, including minorities and poor families, as well as people living in urban 

environments (Oliveti et al. 1996; Weitzman et al. 1990; Wissow et al.1988).  In addition, people 

of color are more likely to live in areas that fail to meet national ambient air quality standards.  In 

1990, 57 percent of whites, 65 percent of African Americans, and 80 percent of Hispanics lived 

in counties that exceeded one of the federal criteria air pollutant standards (Wernette and Nieves 

1992).  In addition, 12 percent of whites, 20 percent of African Americans, and 31 percent of 

Hispanics lived in counties that failed to meet the federal standard for three or more criteria air 

pollutants (Wernette and Nieves 1992).

The Toxics Release Inventory (TRI), created by the Emergency Planning and Community 

Right-to-Know Act (EPCRA) of 1986, requires manufacturing facilities with 10 or more full 

time employees that process over 25,000 pounds in aggregate or use more than 10,000 pounds of 

any one of the 650 TRI chemicals to report their releases and waste management strategies 

annually to the U.S. Environmental Protection Agency (EPA) (U.S. Environmental Protection 

Agency 2001).  Reporting requirements cover emissions from routine processing and/or 

accidental releases as well as chemicals managed as waste from businesses categorized in 

Standard Industrial Classification (SIC) codes 10, 12, 20-39, 49, and 51 including metal and coal 

mining, printing, chemical, paper, electronic, plastics, refining, metal, and other industries.

Facilities that fail to report annual releases by July 1 each year are subject to fines of up to 

$27,500 per day (Office of Environmental Information 2001).    
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The purpose of EPCRA is twofold. First, it seeks to provide citizens with information on 

chemical releases and waste management activities in and around their neighborhood, thereby 

empowering them to hold companies accountable for their emissions (Office of Environmental 

Information 2001).  Second, it attempts to provide government agencies with data for research 

and policy development (Office of Environmental Information 2001).  While an important 

advance in helping communities to understand the local air toxics load, the TRI program suffers 

from at least three weaknesses.  First minimum reporting requirements do not require smaller 

industrial facilities to report.  Theoretically, cumulative effects of smaller non-TRI-reporting 

facilities might outweigh the individual effect of larger (but fewer) TRI-reporting facilities.  

Second, EPA’s TRI database (as well as TRI data organized and maintained by environmental 

interest groups) does not address environmental fate and transport of industry emissions using 

modeling and other analytical techniques.  The characteristics of pollutant concentration 

distributions depend on a variety of factors including media emitted, physical properties of the 

chemical, wind direction and speed, meteorological conditions, and stack height.  Finally, by 

reporting emissions at the county level, the TRI database fails to capture important highly 

localized equity impacts.    

The analysis presented here develops a methodology to characterize releases inclusively by 

incorporating emissions from smaller, non-TRI-reporting facilities.  In addition, the project is 

carried out at four geographic levels of resolution (zip code, Census tract, Census block group, 

and Census block) in order to assess the importance of geographic resolution in analyzing air 

toxics emissions.  The paper models pollutant concentrations using dispersion modeling and 

geographic information systems (GIS) analysis and hypothesizes that inclusive modeling of

releases from TRI-reporting and smaller non-TRI-reporting facilities at finer levels of 
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geographic resolution will change the distribution of exposure potential for people living in a 

given area and subsequently improve the quality of equity analysis. 

2 Materials and Methods   

2.1 Study Area 

The analysis focuses on Durham County, North Carolina, which represents a broad range 

of values across demographic, socioeconomic, and social indicators.  Table 1 shows selected 

demographics for Durham County from 2000 Census data.  Forty percent of Durham County 

residents are black and almost eight percent are Hispanic (U.S. Census Bureau 2003).   In 

addition, approximately ten percent of residents are living in poverty and almost forty-six percent 

reside in rental properties (U.S. Census Bureau 2003). Compared to Durham County as a whole, 

the State of North Carolina, and the United States, Central Durham has a higher percent of 

minorities, higher percent of families in poverty, higher percent of children under the age of six 

in poverty, lower median household income, and a higher percent of renter occupied housing 

(U.S. Census Bureau 2003). Figure 1 highlights the location of Durham County within North 

Carolina.  The yellow box represents Central Durham. Figure 2 depicts two demographic 

variables for Durham County (percent African American by 2000 Census block and median 

household income by 2000 Census block group).  Note that areas within the yellow box (Central 

Durham) are characterized with a higher percentage of African Americans and lower household 

median income. 

2.2 Demographic data 

This project uses year 2000 demographic data from the U.S. Census Bureau.  Census 

demographic information is available in four different geographic scales: zip code tabulation 

areas (ZCTAs), tracts, block groups, and blocks.  Zip codes and tracts designate the largest 
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geographic areas.  The most detailed and focused information is contained in blocks.  Blocks are 

also combined into block groups, an intermediate category.   Durham County contains 20 zip 

codes, 53 tracts, 129 Census block groups, and 3284 Census blocks.  Figure 3 depicts zip code, 

tract, block group, and block boundaries for Durham County.   

2.3 Facility Data 

Year 2000 TRI data were extracted from EPA’s TRI Explorer and uploaded into a GIS.   

TRI facility locations and emissions were geocoded to a base map using latitude and longitude.  

Facility location was cross-referenced against tax parcel data to ensure accurate geolocation.  

TRI data from 2000 indicate that North Carolina is home to 874 TRI sites, releasing over 126 

million pounds of contaminants to the air.   Durham County is home to 16 of these sites releasing 

over 48,000 pounds of contaminants to the air.   

Non-reporting facilities within TRI-reporting SIC codes were extracted from city 

marketing directories and imported into the GIS project.  Facility locations were address-

geocoded to the individual tax parcel unit.  City marketing data contain countywide listings of 

business names, addresses, contact persons, employee range, and SIC codes. Year 2000 city 

marketing data indicate that Durham County contains over 400 non-TRI-reporting industrial 

facilities classified in TRI-SIC reporting codes.  Figure 4 maps facilities required to report to TRI 

and those in the same SIC codes, which were not required to report to TRI in Durham County in 

2000.  Note that while only three of the TRI-reporting facilities are located in the low-income, 

predominantly minority communities of Central Durham, the majority of the non-TRI-reporting, 

smaller facilities are situated in Central Durham. 
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2.4 Selecting a Base Case  

Ideally, all SIC codes and pollutants subject to TRI guidelines would be evaluated in an 

aggregate model.  However, to facilitate the development of the spatial methods described here, 

we selected a prototype SIC code and pollutant to model.  Based on an evaluation of year 2000 

air releases from several Southern states, a 4-digit rather than 2-digit SIC code was selected as a 

base case.  This selection criterion better supported the required modeling assumptions that a 

TRI facility within a defined SIC code releases a similar pollutant profile when compared to 

other TRI and non-TRI reporting facilities in the same SIC code.   

Of the 16 TRI-reporting sites in Durham County, no two facilities were defined within one 

4-digit SIC code.  Therefore, we based the prototype selection on quantity and type of air 

releases.  SIC code 2752, representing Commercial Lithographic Printing, was chosen because it 

released one type of pollutant rather than multiple classes of pollutants.  In addition, it ranked 

second within Durham County for total air releases.  Within Durham County, SIC code 2752 

contained 1 TRI-reporting and 36 non-TRI-reporting sites. The TRI-reporting site was located in 

Southern Durham, while the 36 non-TRI code 2752 sites were spread throughout the county – 

see Figure 5.  The TRI-reporting site emitted “certain glycol ethers” as fugitive (rather than 

stack) releases to the air.   

An evaluation of air emissions in six Southern states with manufacturing facilities 

classified in SIC code 27 revealed wide variability among 2-digit SIC codes.  However, 

variability was low when facilities were restricted to 4-digit SIC codes.  For example, of the 16 

Virginian facilities in 2-digit SIC code 27 releasing TRI chemicals to the air in 2000, three were 

identified within 4-digit SIC code 2752.  All three facilities released “certain glycol ethers” or 
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ethylene glycol to the air.  In addition, for all three facilities, the overwhelming majority of the 

releases were identified as fugitive rather than stack.   

Glycol ethers represent a bundle of chemicals used in many industries (including printing) 

as solvents (Environmental Defense 2002). According to 2000 TRI data, the TRI-reporting 

facility (PBM Graphics) in Durham County released 13,733 pounds of “certain glycol ethers” to 

the air.  All releases were classified as fugitive, rather than point source.  In order to determine 

the specific chemical used, PBM Graphics was contacted directly.  According to PBM Graphics 

personnel, the company used ethylene glycol monobutyl ether in 2000.  Ethylene glycol 

monobutyl ether is a non-photo-reactive volatile organic compound used as a solvent during 

printing processes.  It is a suspected cardiovascular, blood, developmental, endocrine, 

gastrointestinal, kidney, neurological, and respiratory toxicant (Environmental Defense 2002; 

New Jersey Department of Health and Senior Services 2001).  According to the CalTox multi-

media and multi-exposure model, ethylene glycol monobutyl ether exposure potential is 

primarily through air (rather than settled materials) and induces health effects via inhalation and 

ingestion (State of California Department of Toxic Substances Control 2002).   The half-life of 

ethylene glycol monobutyl ether is approximately 16 hours in the air.  Both the exposure 

properties and half-life make ethylene glycol monobutyl ether an appropriate pollutant for air 

dispersion modeling.  Although other facilities within SIC code 2752 may emit different 

subtypes of  “certain glycol ethers,” the exposure properties and half lives of individual 

compounds do not vary significantly enough to invalidate modeled concentrations.   

2.5 Emissions Estimation Algorithm  

Comparing TRI-reporting to non-TRI-reporting sites requires the estimation of emissions 

from non-TRI-reporting facilities. Ideally, annual averages of production units would be utilized.  



GIS Modeling of Air Toxics Releases

11

However, employees can serve as a proxy when production units are not readily known.  

Therefore, we generated an employee-based emissions algorithm in order to impute emissions to 

non-TRI-reporting facilities.  The general algorithm for computing the estimated emissions is as 

follows. Step 1 involves the calculation of a per-employee emissions rate for a chemical of 

concern (C1) based on data from all TRI-reporting facilities (F1, F2, F3…Fn).  In Step 2 emissions 

are imputed to non-TRI-reporting facilities by multiplying the per employee emissions rate 

(based on the TRI-reporting facilities) by the number of employees working at each of the non-

TRI-reporting facilities. 

Using employees instead of production units fails to address how economies of scale might 

affect production patterns.  However, the literature (Dasgupta et al. 2002; Little et al. 1987; U.S. 

Environmental Protection Agency 2001) indicates that smaller facilities tend to emit more 

pollution on a per unit of production basis than larger units, so our imputed data likely represent 

an underestimate of emissions from non-TRI-reporting facilities.  Therefore, if significant 

differences are noted between TRI-reporting models and inclusive TRI-reporting plus non-TRI-

reporting sites, under this conservative approach, the actual effect can be assumed to be greater.   

In order to impute emissions for the 36 non-TRI-reporting facilities in code 2752, a per 

employee emissions rate (based on emissions from PBM Graphics) was calculated.  PBM 

graphics employed approximately 375 employees in its printing facility in 2000.  The reported 

emissions were 13,733 pounds of glycol ethers delivering an imputed emissions rate of 36.6 

pounds per employee.  As a data check, several SIC code 2752 facilities in surrounding sates had 

similar emissions per employee ratios.  City marketing directories were used to ascertain the 

number of employees at the 36 non-TRI-reporting facilities.  Using the per employee emissions 

rate and the number of employees, we imputed air emissions for the 36 non-TRI-reporting 
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facilities.  Once the base-case methodology is developed, future analysis should include Monte 

Carlo simulations that vary the per employee emissions rate across non-TRI-reporting facilities.  

Figure 5 depicts the 37 facilities in Durham County classified in SIC code 2752 and their 

corresponding imputed emissions. According to imputed emissions estimates, the 36 non-TRI-

reporting facilities emitted a total of 22,156 pounds per year.

2.6 ISC Dispersion Modeling 

Developed by EPA, the Industrial Source Complex (ISC) model is one of the most widely 

used and successful steady state Gaussian-based air dispersion models.  Major assumptions of 

Gaussian models include: 1) that the rate of plume diffusion is proportional to contaminant 

concentration; 2) a constant emissions rate; 3) a conservative pollutant (no chemical reactions or 

biodecay); 4) relatively flat terrain; and 5) perfect ground reflection.  Because of these 

assumptions, Gaussian models are most appropriate for local applications within 50 kilometers 

or 2500 square kilometers (km2) (Masters 1998).  Gaussian models incorporate two dispersion 

coefficients based on the standard deviations of the horizontal and vertical Gaussian distributions 

of the downwind plume dispersion (Masters 1998).   The standard deviations or dispersion 

coefficients increase with distance downwind of the source.  In addition to distance, the 

dispersion coefficients also consider atmospheric stability parameters that address qualitative 

descriptions of prevailing weather conditions such as season, time of day, and degree of cloud 

cover.   Gaussian model output reports annual average concentration of pollutant for each 

defined receptor.  Receptors are user defined areas of interest and often include the geographic 

centroid of zip codes or Census tracts or points on regular grids spanning a study region.

This analysis utilized the short term ISC model, ISCST3, which captures initial mixing 

phenomena at the source, and is best suited for study areas less than 2500 km2.  Containing 
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approximately 751 km2, Durham County falls well within this limitation.  ISCST3 short-term 

modeling allows for multiple source and receptor specifications and requires users to input a 

year’s worth of hourly meteorological data from the National Weather Service.  The modeling 

period was January 1, 2000 to December 31, 2000.  Source emission rates were treated as 

constant over one year by converting the number of pounds released in calendar year 2000 to 

grams per second.   

2.6.1 Input Requirements 

Within ISCST3, sources may be specified as POINT (stack), AREA (storage piles or 

irregular shapes), or VOLUME (multiple vents or conveyor belts) types (Office of Air Quality 

Planning and Standards 1995).  According to TRI Explorer and conversations with TRI and non-

TRI-reporting sites in SIC code 2752, releases from printing lithography facilities are generally 

fugitive rather than point.  The AREA rather than VOLUME type was selected in order to 

control for differences in building size.  The area of each building footprint (in square meters) 

was based on the area of PBM graphics scaled to the number of employees.  Furthermore, the 

AREA subtype is best suited for low level releases with no plume rise (Office of Air Quality 

Planning and Standards 1995).  Area emission rates based on the per employee emissions 

algorithm were entered into ISCST3 in grams per second meter squared (g/(s-m2)).    An average 

release height of 5 meters was specified for each source.  Source coordinates were entered as 

Universal Transverse Mercator (UTM) coordinates.   

A year’s worth of hourly meteorological data was compiled using the PCRAMMET 

meteorological preprocessor program.  Ground level weather data was obtained from the 

Raleigh-Durham Airport surface station (approximately 3 miles southwest of Durham County).  

The anemometer height at the airport is approximately 10.1 meters.  Mixing height data from the 
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National Climatic Data Center (NCDC) was obtained for the closest station, Greensboro, North 

Carolina, located approximately 50 miles west of Durham County.  The twice daily mixing 

height values were combined with hourly surface data using PCRAMMET in order to derive 

hourly interpolated mixing height values.  

Receptors were defined as the geographic centroid of four modeling units (zip code, 

Census tract, Census block group, and Census block) in Durham County, North Carolina.  For 

each geographic scale, receptor coordinates of the centroids were entered as UTM coordinates.

The default receptor elevation of ground level was utilized.  Areas adjacent to Durham County 

were not specified or analyzed in this study.   

In order to control for pollutant fate and transport characteristics, the ISCST3 models 

allows users to input pollutant half-life and specify average land terrain across the study area of 

interest.  As an initial exercise, default values for pollutant half-life and landscape terrain were 

first specified.  The ISCST3 default pollutant half-life is 4 hours.  However, the half-life of 

ethylene glycol monobutyl ether is 16 hours.  When the default half-life was changed to 16 

hours, significant changes in output results were not observed.  The default ISCT3 landscape 

terrain is rural.  Because the landscape of Durham County is variable, the models were also 

specified using an urban terrain.  Results did not vary significantly based on rural versus urban 

specified landscape terrain.   

2.6.2 Models 

In order to assess the importance of inclusive modeling of all emitters as well as the 

importance of geographic resolution, eight ISCT3 models were specified:  

1a: TRI-reporting sites alone at zip code level (20 receptors) 

1b: All emitters at zip code level (20 receptors) 



GIS Modeling of Air Toxics Releases

15

2a: TRI-reporting sites alone at tract level (53 receptors) 

2b: All emitters at tract level (53 receptors) 

3a: TRI-reporting sites alone at block group level (129 receptors) 

3b: All emitters at block group level (129 receptors) 

4a: TRI-reporting sites alone at block level (3824 receptors) 

4b: All emitters at block level (3824 receptors) 

Each model run generated an average concentration of the pollutant in micrograms per cubic 

meter (µg/m3) in a particular receptor grid for the entire year.  Comparing the (a) to (b) runs (e.g. 

1a to 1b) allows for determination of the importance of inclusive modeling, i.e. does including 

non-TRI-reporting facilities change exposure potential across different demographic groups.  

Comparing the (1)-(4) runs explores the importance of geographic resolution in analyzing 

contaminant distribution across demographic groups.  Statistical and spatial analysis of pollutant 

concentration was based on model output and was not verified by collecting environmental 

samples.   

2.7 Statistical and Spatial Analysis 

Using spatial and tabular tools within GIS, modeled emissions from the ISC dispersion 

models were aggregated into spatially referenced datasets and combined with underlying Census 

demographic data.    The combined datasets were imported into Microsoft Excel and STATA for 

statistical analysis. 

2.7.1 Cumulative Distribution Functions 

Comparing means (or medians) of modeled concentration, as is the case in multivariate 

regression analysis, may overemphasize differences near the center of the concentration 
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distribution.  Many times, scientists and public health analysts are most concerned with areas of 

relatively high (or low) exposure risk (i.e., the tails of the distribution).  Therefore, we utilized 

cumulative distribution functions (CDF) to address disparate exposure potential across two 

groups.  For illustrative purposes, the y-axis of a CDF curve represents the percentage of the 

population (from 0 to 100) and the x-axis represents exposure potential (interpolated monitoring 

site data or modeled concentration levels for example) (Lopez 2002).

The CDFs were estimated using techniques reported in Waller et al. 1999 (Waller 1999).  

CDFs were created for all four levels of geographic resolution (zip code, Census tract, Census 

block group, and Census block), although only data for Census block, the finest level of 

resolution, are presented here.  Population data for each subpopulation of interest for each 

geographic level of resolution were determined using 2000 Census data and GIS.  Exposure 

values were assigned to each unit based on modeled concentration values for the corresponding 

geographic level of resolution. 

2.7.2 Multivariate Statistical Analysis 

In order to access multiple demographic variables at once, multivariate statistical analysis 

was performed with STATA 8.0.  All dependent variables were log-transformed to normalize 

right skewed data.

2.7.3 Kriging 

Using the spatial analyst extension within ArcView 3.2 GIS software, a set of contour lines 

representing predicted concentration of glycol ethers for the entire County of Durham were 

developed. Using a built-in geostatistical program with user-defined parameters, ArcView 

software interpolates lines that represent locations with the same pollutant concentration 
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magnitude. Although kriging the modeled data introduces an additional layer of uncertainty, the 

smoothed contour lines depict a more easily interpreted array of pollutant concentrations, which 

is extremely useful for neighborhood level equity analyses and community outreach. 

3 Results 

The outcome variables of interest from the ISC dispersion modeling datasets include: 1) the 

annual average concentration (µg/m3) of glycol ethers based on modeling of the TRI site alone; 

and 2) the annual average concentration (µg/m3) of glycol ethers based on modeling of the TRI 

site plus non-TRI-reporting sites.  Modeling was conducted at four geographic levels: zip code, 

Census tract, Census block group, and Census block.  The annual average concentrations were 

converted to nanograms per cubic meter (ng/m3) in order to facilitate presentation and log 

transformation.    

Table 2 presents descriptive statistics for the annual average concentration in zip codes, 

Census tracts, Census block groups, and Census blocks.  Dispersion modeling data range in 

concentration from 0.3 ng/m3 (TRI site alone, zip code level) to 821.05 ng/m3 (all sites together, 

Census block level).   The inclusion of non-TRI-reporting sites in the model increases the 

average concentration among zip codes from 1.5 ng/m3 to 4.9 ng/m3.  Likewise, the inclusion of 

smaller non-TRI-reporting sites in the model increases the average concentration among Census 

tracts from 2.7 ng/m3 to 10.3 ng/m3; for Census block groups from 3.0 ng/m3 to 10.2 ng/m3; and 

Census blocks from 3.9 ng/m3 to 12.1 ng/m3.

3.1 Importance of Inclusive Modeling  

As shown in Figure 6, inclusive modeling of all facilities, accomplished by imputing 

emissions to non-TRI-reporting facilities in the same SIC code, rather than modeling of TRI sites 

alone, significantly alters the magnitude and spatial distribution of modeled air concentrations.  
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Recall from Figure 2 that areas in southern Durham County have higher household median 

incomes and relatively low densities of minorities as compared to Central Durham, as measured 

by Census 2000 data.  Note the northward drift of higher concentration contours (the deeper the 

red color, the higher the modeled concentration) into loser income, predominantly minority 

communities.  Thus incorporating the non-TRI-reporting facilities provides a substantially 

different perspective on exposure to contaminants across race and income lines. 

For non-inclusive modeling at each level of geographic resolution, major impacts occur 

within a few miles of the TRI site.  For inclusive modeling of the TRI-reporting plus non-TRI-

reporting facilities at each level of geographic resolution, major impacts are spread throughout 

Durham County and into adjacent counties (Chatham, Orange, and Wake).  The aggregate effects 

of modeling multiple smaller non-TRI-reporting emissions in Central Durham are of the same 

order of magnitude as the effects of the larger TRI site in southern Durham.  Although non-TRI-

reporting sites do not significantly affect exposure potential in areas with TRI facilities, they do 

affect exposure potential in areas at some distance from TRI facilities.  This results in part from 

the size and specific locations of the reporting and non-TRI-reporting 2752 facilities and may not 

necessarily hold when generalized to other SIC codes.  

Figure 7 depicts the CDF for black and white subpopulations modeled at the block level.  

Graph A represents exposure values for non-inclusive modeling of air emissions for TRI-

reporting facilities only.  The CDF curves for black and white subpopulations exhibit a narrow 

gap, indicating that a slightly larger proportion of whites reside in blocks with lower exposure 

potentials.  Graph B represents exposure potential values for inclusive modeling of air emissions 

from all emitters at the block level.  Inclusive modeling results in a larger gap between the CDF 

curves for the black and white subpopulations. The increase in exposure disparity as you move 
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from non-inclusive to inclusive modeling persists at the three coarser levels of geographic 

resolution (data not shown).  However, the increased gap is most apparent at the Census block 

level.

Figure 8 depicts the CDF curves for comparing adult and non-adult (under 18) 

subpopulations.  Again, graph A represents exposure values for non-inclusive modeling of air 

emissions for TRI-reporting facilities only.  The CDF curves for adults and non-adults overlap, 

indicating a lack of disparate exposure.  Graph B represents exposure values for inclusive 

modeling of air emissions from all emitters.  Unlike the CDF for race depicted above, potential 

exposure disparities based on age do not appear sensitive to non-inclusive versus inclusive 

modeling.  CDFs were also estimated for persons under five versus persons over five.

Significant differences in exposure potential were not observed based on non-inclusive versus 

inclusive modeling.

3.2 Importance of Geographic Resolution 

Comparing run 1 (zip code receptor) through run 4 (Census block receptors) in Table 2 

reveals that modeling receptors at a more refined geographic resolution alters the annual average 

concentrations of glycol ethers for both the TRI models alone as well as the inclusive all sites 

models.  The range of concentrations for the Census block model is successively greater than the 

range of concentrations for the coarser geographic scale models.  As the same emissions are 

being spread over successively smaller areas, the wider range of concentrations at finer 

geographic scales is an intuitive result. 

Figure 9 depicts kriging results with two contour maps representing annual average 

concentration of glycol ethers for Durham County, North Carolina (the deeper the blue color, the 

higher the modeled concentration).  Both maps represent inclusive modeling of all emitters.  



GIS Modeling of Air Toxics Releases

20

However, the left figure depicts contours based on modeling sources and receptors at the coarser 

zip code level of geographic resolution, while the right figure represents modeling at the finer 

Census block group level.  As shown in Figure 9, modeling exposure receptors at finer 

geographic levels of resolution (i.e. Census block group rather than zip code) reveals localized, 

neighborhood-level exposure hotspots that are not apparent at coarser geographic scales – note in 

particular the high concentration contours that appear in Central Durham under this alternative 

modeling approach.  Modeling finer geographic levels of resolution provides a substantially 

different perspective on exposure to contaminants across race and income lines.  Unlike the zip 

code level contours, the Census block group level contours highlight areas in Central Durham, 

characterized by a higher percentage of minorities and a lower median household income, as 

potential hotspots for exposure.

To better summarize and assess if modeling of air emissions at varying levels of 

geographic resolution affects the distribution of exposure potential, we performed multivariate 

statistical analysis on the relationship between concentration and race and income.   We focus 

specifically on these two variables because of their ubiquitous use in equity analysis.  Dependent 

variables of interest were the modeled concentrations at the four geographic levels of resolution 

(zip code, Census tract, Census block group, and Census block).

Tables 3 and 4 summarize regression results across geographic scale.   In Table 3, moving 

from top to bottom indicates stepping from coarser (zip code) to finer (Census block) levels of 

geographic resolution.  A positive sign indicates a positive coefficient on the regression 

coefficient and an “S” indicates significance at the 0.05 level.  Likewise, a negative sign 

indicates a negative coefficient on the regression coefficient and a “NS” indicates lack of 

significance at the 0.05 level.  As you move from top to bottom, both the income and minority 
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variables become significant and of the expected sign.  These results highlight the importance of 

spatial resolution in conducting equity analysis.  Table 4 presents more detailed regression 

results from multivariate statistical analysis.  Comparing the zip code to block models explores 

the importance of geographic resolution in analyzing contaminant distribution.   The Census 

block model, representing inclusive modeling of all emitting sites at a very refined geographic 

scale, indicates exposure potential disparities across both income and race.   

Additional multivariate analyses including the relationships between modeled concentration 

and percent children, percent vacant housing, and percent receiving public assistance did not 

reveal any statistically significant trends (results not presented here).  In addition, percent 

minority appears to be the most relevant “race” variable based on the modeled data; and median 

household income appears to be the most important “income” variable based on the modeled 

data (results not presented here).   

4 Discussion and Conclusion 

Previous air toxics and TRI studies have taken advantage of advances in spatial and 

statistical mapping software to assess how geographic levels of resolution affect environmental 

justice conclusions.  In a 2002 article summarizing many existing geographic-based air toxics 

studies, Lopez explains that conclusions often differ depending on the geographic unit of 

analysis (Lopez 2002).  For example, “micro area” studies that observe areas with and without 

facilities conclude that race is not a significant predictor for site but that income may play a role.  

On the other hand, “meso area” studies that expand the area of interest to include blocks adjacent 

to facilities often conclude that race is an important predictor for siting and income is not.  

Furthermore, results from “macro” level studies that compare counties to other counties or states 

to other states have correlated industrial facility siting with large percentages of minorities and 
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persons in poverty.  However, the results may be confounded by urban/rural status and other 

trends.   Other traditional environmental justice analysis of industrial siting has focused on the 

location of facilities and not on concentration distributions and subsequent exposure potential 

(Morello-Frosch et al. 2002).   

Our study attempts to clarify conflicts in the literature regarding facility siting, exposure 

potential, and equity by developing methods for inclusive modeling of releases at fine levels of 

geographic resolution.  Although the results described here are specific to emissions of glycol 

ethers from Printing/Lithography sites in Durham County in 2000, the method developed is 

relevant across time, space, and industries.  This is one of the first studies to develop methods for 

characterizing and mapping releases from smaller, non-TRI-reporting facilities.  The study 

methodology further characterizes pollutant distribution and fate and transport by incorporating 

atmospheric dispersion modeling.  The use of GIS as a platform for data storage, statistical 

analysis, and kriging remains an important cornerstone for conducting spatially based 

environmental justice research. In addition, although average and maximum annual average 

concentrations of the pollutant (Table 2) do not approach the non-Cancer levels of concern set by 

California EPA (700,000 ng/m3) and EPA (20,000 ng/m3), the methods developed and presented 

here represent an innovative prototype for contaminant analysis.  A full characterization of 

exposure potential would take into consideration releases from other sources and adjacent 

counties.

 In a recent article, Maantay attributes the failure of previous studies to address small 

polluters such as automobile repair shops to the lack of standardized and publicly available 

datasets on small polluters (Maantay 2002).  Although there are several caveats to using 

employees to estimate facility emissions, we believe that the approach offers a sound and 
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creative solution for addressing these data limitations.  However, future studies adopting this 

mechanism should perform some quality assurance techniques to ensure that number of 

employees reflects a representative proxy to production units and/or pollutant emissions.    

The results indicate that the inclusive modeling of all facilities significantly alters the 

magnitude and spatial distribution of modeled air concentrations (Figure 6).  Modeling all sites 

together rather than modeling TRI sites alone increases the magnitude of modeled concentrations 

– especially in areas with no TRI facilities.  The red concentration contours depicted on the 

inclusive map are spatially correlated to high minority and low income neighborhoods presented 

in Figure 2.  The same correlation is not observed for the TRI-reporting contours.  In addition, 

the CDF curves indicate that inclusive facility modeling at fine levels of geographic resolution 

results in exposure disparities across race, but not age (Figures 8 and 9).   

As described above, a significant body of literature exists comparing varying levels of 

geographic resolution to different exposure potential outcomes (Glickman 2004; Lopez 2002; 

Maantay 2002; Sheppard et al. 1999).   Intuitively, it makes sense that the finer the geographic 

resolution, the higher the predicted exposure concentration.  This paper attempts to build upon 

these studies by showing that the choice of geographic resolution significantly affects both the 

significance and trend of multivariate statistical analysis of underlying demographics.  In our 

study, concentration gradients are substantially influenced by the resolution of the model, 

indicating that receptor choice is a significant modeling parameter and that localized equity 

impacts may be best represented at the block level.   

These new methods significantly enhance the ability to model air toxics and perform 

equity analysis.  They also clarify conflicts in the literature regarding environmental justice 

findings.  In modeling air toxics, both the fate and transport literature and the mechanistic 
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literature indicate that modeling inclusively at a refined geographic scale makes biological sense.  

From a policy standpoint, then, it becomes critical to understand how the design of spatial 

analyses can shape conclusions. This work, as it moves forward, will also have much to say 

about which facilities should be required to report to TRI, as well as how much reliability we can 

place on current TRI data.  Future analysis will consider multiple contaminant exposures from 

multiple industries and explore the use of Toxic Equivalency Factors to better analyze 

underlying justice concerns and exposure potential.
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Table 1. Demographics of Central Durham, Durham County, State of North Carolina, and United States

Region  Population Hispanic Black  Families  Under 6  Median  Renter 
      in Poverty in Poverty Household Occupied 
    (%) (%) (%)  (%)  Income (%) (%) 

Central Durham 57,690  12.5 60.5 22.2  37.8  $36,368  64.8 

Durham County 223,314  7.6 39.5 9.8  19.9  $43,337  45.7 

North Carolina 8,049,313 4.7 21.6 9.0  17.8  $39,184  30.6 

United States 281,421,906 12.5 12.3 9.2  18.1  $41,994  33.8  

Source: U.S. Census 2000 (U.S. Census Bureau, 2003 #491). 
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Table 2.  Year 2000 annual average concentration of ethylene monobutyl ether (nanograms/m3)

Geographic Number of Model Run Mean Median Max. Min. SD 
Resolution Receptors 

Zip Code 20  1a: TRI Alone 1.5 0.9 5.4 0.3 1.31 
    1b: All Emitters 4.9 2.8 17.9 0.8 4.4 

Census Tract 53  2a: TRI Alone 2.7 2.1 19.8 0.6 2.8 
    2b: All Emitters 10.3 9.0 46.4 2.2 7.5 

Census Block 129  3a: TRI Alone 3.0 2.2 28.2 0.5 3.3 
Group    3b: All Emitters 10.2 9.1 49.4 1.6 7.0 

Census Block 3824  4a: TRI Alone 3.9 2.2 799.2 0.4 19.6 
    4b: All Emitters 12.1 8.7 821.1 1.2 27.3 
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Table 3.  Trends from the multivariate statistical analysis 

   Inclusive Modeling 

Zip Code  Minority: +/S 
   Income: +/S 

Census tract  Minority: +/NS 
Income: -/~S 

Census block group Minority: +/S 
  Income: -/NS 

Census block  Minority: +/S 
Income: -/S 

S:  significance at the 0.05 level 
NS:  lack of significance at 0.05 level 
+:  positive sign on beta coefficient, positively proportional to pollutant concentration 
-:  negative sign on beta coefficient, inversely proportional to pollutant concentration
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